Strongly self-absorbing property for inclusions of C^*-algebras with a finite Watatani index

Hiroyuki Osaka (Ritsumeikan University, Japan)

Joint work with Tamotsu Teruya

Special Week in Operator Algebras 2010
East China Normal University
June 21 - June 25, 2010
Motivation

In Elliott program to classify nuclear C*-algebras by K-theory data the systematic use of strongly self-absorbing C*-algebras plays a central role. In the purely infinite case the Cuntz algebra O_{∞} is a cornerstone of the Kirchberg-Phillips classification of simple purely infinite C*-algebras [17] [25]. In the stably finite case the Jiang-Su algebra \mathbb{Z} plays a role similar to that of O_{∞}. In fact Jiang-Su proved in [12] that simple, infinite dimensional AF algebras and Kirchberg algebras (simple, nuclear, purely infinite and satisfying the Universal Coefficient Theorem) are \mathbb{Z}-stable, that is, for any such an algebra A one has an isomorphism $\alpha: A \to A \otimes \mathbb{Z}$. Gong, Jiang, and Su proved in [5] that $(K_0(A), K_0(A)^+)$ is isomorphic to $(K_0(A \otimes \mathbb{Z}), K_0(A \otimes \mathbb{Z})_+)$ if and only if $K_0(A)$ is weakly unperforated as an ordered group, when A is a simple C*-algebra. Hence A and $A \otimes \mathbb{Z}$ have isomorphic Elliott invariant if A is simple with weakly unperforated K_0-group, that is, $A \cong A \otimes \mathbb{Z}$ whenever A is classifiable. On the contrary, Rørdam and Toms in [31] and [33] presented examples which have the same Elliott invariant as, but are not isomorphic to, and not \mathbb{Z}-absorbing. So it appears plausible that the
Elliott conjecture, which is formulated in [30], holds for all simple, unital, nuclear, separable \mathcal{Z}-absorbing C*-algebras.

In this talk we reconsider the \mathcal{D}-absorbing property for crossed product of a C*-algebra A with \mathcal{D}-absorbing by a finite group action with the Rokhlin property in the framework of inclusion of unital C*-algebras $P \subset A$ of Watatani index finite ([36]) and show that if a faithfule conditional expectation E from A to P has the Rokhlin property in the sense of Kodaka-Osaka-Teruya [18], then P is \mathcal{D}-absorbing.
Stronly self-absorbing property

Definition 1. A separable, unital C*-algebra D is called *strongly self-absorbing* if it is infinite-dimensional and the map $\text{id}_D \otimes 1_D : D \to D \otimes D$ given by $d \mapsto d \otimes 1$ is approximately unitarily equivalent to an isomorphism $\varphi : D \to D \otimes D$, that is, there is a sequence $(v_n)_{n \in \mathbb{N}}$ of unitaries in D satisfying

$$\| v_n^* (\text{id}_D \otimes 1_D(d)) v_n - \varphi(d) \| \to 0 \ (n \to \infty) \ \forall d \in D.$$

A C*-algebra A is called *D-absorbing* if $A \otimes D \cong A$.

Example 2.

1. (Jiang-Su ’99) The Jiang-Su algebra \mathcal{Z} is a direct limits of prime dimension drop algebras $I_{p,q} = \{ f \in C([0,1], M_{pq}) \mid f(0) \in 1_p \otimes M_q, f(1) \in M_p \otimes 1_q \}$ for relative prime integers $p, q \geq 2$. Then \mathcal{Z} is strongly self-absorbing.

2. (Toms-Winter ’07) UHF algebras of infinite type (for example, an universal UHF algebra $\mathcal{U}_\infty = \prod_p M_{p\infty}$), Cuntz algebras $\mathcal{O}_2, \mathcal{O}_\infty, B \otimes \mathcal{O}_\infty$ (with B UHF of infinite type) are strongly self-absorbing property.
Question 3. Let $P \subset A$ be an inclusion of unital C*-algebras and $E : A \to P$ be a conditional expectation of index finite type. That is, there is a quasi-basis $\{(w_i, w_i^*)\}_{i=1}^n \subset A \times A$ such that $x = \sum_{i=1}^n E(xw_i)w_i^* = \sum_{i=1}^n w_iE(w_i^*x)$ for any $x \in A$.

(1) If A is strongly self-absorbing, when P is strongly self-absorbing?

(2) Let D is strongly self-absorbing and A D-absorbing. When P is D-absorbing?
In this talk we introduce the **finitely saturated property** for a class \(C \) of separable unital C*-algebras and **local C-property** for a unital C*-algebra.

Answer 4

(1) Let \(A \) be a unital C*-algebra which is a local C*-algebra and an action \(\alpha \) of a finite group \(G \). Suppose that \(\alpha \) has the Rokhlin property, then the crossed product algebra \(A \rtimes_\alpha G \) is a unital local C-algebra.

(2) Moreover, we introduce the Rokhlin property for a conditional expectation for a pair of unital C*-algebras \(A \supset P \) and show that

(a) if \(A \) is strongly self-absorbing and semiprjective, then \(P \) is strongly self-absorbing.

(b) if \(A \) is a unital local C-algebra, then so is \(P \).

Note that if \(\mathcal{C} \) is the set of all separable, unital, \(\mathcal{D} \)-absorbing C*-algebras, then \(\mathcal{C} \) is finitely saturated.
Local \mathcal{C}-property

Definition 5. (Osaka-Phillips 07) Let \mathcal{C} be a class of separable unital C*-algebras. Then \mathcal{C} is *finitely saturated* if the following closure conditions hold:

1. If $A \in \mathcal{C}$ and $B \cong A$, then $B \in \mathcal{C}$.

2. If $A_1, A_2, \ldots, A_n \in \mathcal{C}$ then $\bigoplus_{k=1}^{n} A_k \in \mathcal{C}$.

3. If $A \in \mathcal{C}$ and $n \in \mathbb{N}$, then $M_n(A) \in \mathcal{C}$.

4. If $A \in \mathcal{C}$ and $p \in A$ is a nonzero projection, then $pAp \in \mathcal{C}$.

Moreover, the *finite saturation* of a class \mathcal{C} is the smallest finitely saturated class which contains \mathcal{C}.

Example 6.

1. Let \mathcal{C} be the set of all unital C*-algebras such as $\bigoplus_{i=1}^{n} P_i M_{n_i}(C(X_i)) P_i$, where P_1 is a projection in $M_{n_i}(C(X_i))$. If all X_i is a point $\{\cdot\}$, or an interval $[0, 1]$, or a torus S^1. Then \mathcal{C} is finitely saturated.

2. Let \mathcal{C} be the set of unital C*-algebras with stable rank one. Then \mathcal{C} is finitely saturated.
3. Let \mathcal{C} be the set of unital C*-algebras with real rank zero. Then \mathcal{C} is finitely saturated.

4. Let \mathcal{C} be the set of all separable, unital, \mathcal{D}-absorbing C*-algebras. Then \mathcal{C} is finitely saturated.

Definition 7. (Osaka-Phillips 07) Let \mathcal{C} be a class of separable unital C*-algebras. A **unital local C-algebra** is a separable unital C*-algebra A such that for every finite set $S \subset A$ and every $\varepsilon > 0$, there is a C*-algebra B in the finite saturation of \mathcal{C} and a unital *-homomorphism $\varphi : B \to A$ (not necessarily injective) such that $\text{dist}(a, \varphi(B)) < \varepsilon$ for all $a \in S$.
Rokhlin property for an inclusion of unital C*-algebras

Let A be a C*-algebra. Then we define

$$c_0(A) = \{ (a_n) \in \ell^\infty(\mathbb{N}, A) \mid \lim_{n \to \infty} \|a_n\| = 0 \}$$

and

$$A^\infty = \ell^\infty(\mathbb{N}, A)/c_0(A).$$

Definition 8 (Izumi 04). Let A be a unital C*-algebra, and let $\alpha: G \to \text{Aut}(A)$ be an action of a finite group G on A. We say that α has the Rokhlin property if there are mutually orthogonal projections $e_g \in A^\infty$ for $g \in G$ such that:

1. $\alpha^\infty_g(e_h) = e_{gh}$ for all $g, h \in G$.
2. $e_g a = ae_g$ for all $g \in G$ and all $a \in A$.
3. $\sum_{g \in G} e_g = 1$.

Example 9. Let $M_{n\infty} = \otimes_{k=1}^{\infty} M_n(C)$ and

$$\alpha = \otimes_{k=1}^{\infty} \text{Ad} \left(\begin{array}{cccccc}
\lambda_1 & 0 & \cdots & \cdots & 0 \\
0 & \lambda_2 & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & 0 & \vdots \\
\vdots & \cdots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & \lambda_n
\end{array} \right),$$

where $\{\lambda_i\}_{i=1}^{n}$ is the root of the unit. Then α be the automorphism of order n on $M_{n\infty}$, and α has the Rokhlin property.

More general, let G be a finite group, λ be the left regular representation of G. We identify $B(\ell^2(G))$ with $M_{|G|}$ and consider an action of G on $M_{|G|\infty}$ by

$$\mu^G_g = \otimes_{n=1}^{\infty} \text{Ad}(\lambda(g)), \ g \in G.$$

Then μ^G has the Rokhlin property.
Proposition 10 (Phillips 06). Let D be an infinite tensor product C*-algebra and let $\alpha \in \text{Aut}(D)$ be an automorphism of order 2, of the form

$$D = \bigotimes_{n=1}^{\infty} \mathbb{M}_{k(n)}(C) \quad \text{and} \quad \alpha = \bigotimes_{n=1}^{\infty} \text{Ad}(p_n - q_n),$$

with $k(n) \in \mathbb{N}$ and where $p_n, q_n \in \mathbb{M}_{k(n)}(C)$ are projections with $p_n + q_n = 1$ and $\text{rank}(p_n) \geq \text{rank}(q_n)$ for all $n \in \mathbb{N}$. Set

$$\lambda_n = \frac{\text{rank}(p_n) - \text{rank}(q_n)}{\text{rank}(p_n) + \text{rank}(q_n)}$$

for $n \in \mathbb{N}$ and, for $m \leq n \Lambda(m, n) = \lambda_{m+1}\lambda_{m+2}\cdots\lambda_n$ and $\Lambda(m, \infty) = \lim_{n \to \infty} \Lambda(m, n)$. Then the followings are equivalent:

1. The action α has the Roklin property.

2. There are infinitely many $n \in \mathbb{N}$ such that $\text{rank}(p_n) = \text{rank}(q_n)$, i.e. $\lambda_n = 0$.

3. $D \rtimes_{\alpha} \mathbb{Z}_2$ is a UHF algebra.

\square
Remark 11. A crossed product algebra \(M_{|G|\infty} \rtimes_{\mu} G \) is also an UHF algebra.

We also could construct an action which does not have the Rokhlin property.

Proposition 12 (Phillips 06). Let \(\alpha \in \text{Aut}(D) \) be a product type automorphism of order 2 as in Proposition 10. Then the followings are equivalent:

1. The action \(\alpha \) has the tracial Rokhlin property.
2. \(\Lambda(m, \infty) = 0 \) for all \(m \).

\(\square \)
The following observation is our motivation to introduce the Rokhlin property for the inclusion of unital \(C^* \)-algebras with a finite \(C^* \)-index.

Proposition 13. (Kodaka-Osaka-Teruya 08) Let \(\alpha \) be an action of a finite group \(G \) on a unital \(C^* \)-algebra \(A \) and \(E \) the canonical conditional expectation from \(A \) onto the fixed point algebra \(P = A^\alpha \) defined by

\[
E(x) = \frac{1}{|G|} \sum_{g \in G} \alpha_g(x) \quad \text{for } x \in A,
\]

where \(|G| \) is the order of \(G \). Then \(\alpha \) has the Rokhlin property if and only if there is a projection \(e \in A' \cap A^\infty \) such that \(E^\infty(e) = \frac{1}{|G|} \cdot 1 \), where \(E^\infty \) is the conditional expectation from \(A^\infty \) onto \(P^\infty \) induced by \(E \).

Definition 14. (Kodaka-Osaka-Teruya 08) A conditional expectation \(E \) of a unital \(C^* \)-algebra \(A \) with a finite index is said to have the Rokhlin property if there exists a projection \(e \in A' \cap A^\infty \) satisfying

\[
E^\infty(e) = (\text{Index}E)^{-1} \cdot 1
\]

and a map \(A \ni x \mapsto xe \) is injective. We call \(e \) a Rokhlin projection.
When α is an action of a finite group G on A and is saturated (i.e. $A \rtimes G = \text{span}\{xey \mid x, y \in A\}$), let P denote the fixed point algebra A^α. We know that the canonical conditional expectation $E : A \to A^\alpha$ is of finite index and we have the following basic construction:

$$A^\alpha \subset A \subset A \rtimes_\alpha G.$$

Remark 15. Let α be an action of a finite group G on a unital C^*-algebra A and E the canonical conditional expectation from A onto the fixed point algebra $P = A^\alpha$. Then α is outer. Hence E is of a finite index with $\text{Index}E = |G|$. That is, there is a quasi-basis $\{(w_i, w_i^*)\}_{i=1}^n \subset A \times A$ such that

1. for any $x \in A$

$$x = \sum_{i=1}^n E(xw_i)w_i^* = \sum_{i=1}^n w_iE(w_i^*x)$$

2. $\sum_{i=1}^n w_iw_i^* = |G| = \text{Index}E$.
The following is a key lemma to prove the main theorem

Lemma 16. (Kodaka-Osaka-Teruya 08)

Let $P \subset A$ be an inclusion of unital C*-algebras and E a conditional expectation from A onto P with a finite index. If E has the Rokhlin property with a Rokhlin projection $e \in A' \cap A^\infty$, then there is a unital linear map $\beta : A^\infty \to P^\infty$ such that for any $x \in A^\infty$ there exists the unique element y of P^∞ such that $xe = ye = \beta(x)e$ and $\beta(A' \cap A^\infty) \subset P' \cap P^\infty$. In particular, $\beta|_A$ is a unital injective *-homomorphism and $\beta(x) = x$ for all $x \in P$.

We have

$$A \hookrightarrow A^\infty \xrightarrow{\beta} P^\infty.$$
Theorem 17. (Kodaka-Osaka-Teruya 08) Let \(C \) be any saturated class of semiprojective, separable unital \(C^* \)-algebras. Let \(A \supset P \) be a finite index inclusion with the Rokhlin property. If \(A \) is a unital local \(C \)-algebra, then \(P \) is also a unital local \(C \)-algebra.
idea for the proof

Since A is a unital local C-algebra, for finite set $S \subset P \subset A$ and $\varepsilon > 0$, there is a C^*-algebra Q in the finite saturation of C and a unital $*$-homomorphism $\rho : Q \to A$ such that S is within ε of an element of $\rho(Q)$.

\[
\begin{array}{c}
l^\infty(N, P)/I_n \\
\孙\downarrow \longrightarrow \beta \\
Q(\rho \hookrightarrow A) \quad \beta \quad \downarrow \quad P^\infty = l^\infty(N, P)/\bigcup_n I_n
\end{array}
\]

Using the semiprojectivity of Q, we can lift the $*$-homomorphism β to a $*$-homomorphism $\bar{\beta} : Q \to l^\infty(N, P)/I_n$ for some n. (Note that $c_o(P) = \bigcup_n I_n$)

Take sufficient large $k \in \mathbb{N}$ such that $\beta_k : Q \to P$ is a $*$-homomorphism such that $S \subset \varepsilon \beta_k(Q)$, where $\bar{\beta} = (\beta_k)_{k \in \mathbb{N}} + I_n$. \hfill \Box
Corollary 18. Let $A \supset P$ be an inclusion of separable unital C^*-algebras with the Rokhlin property.

1. If A is a unital AF algebra, then P is a unital AF algebra.

2. If A is a unital AI algebra, then P is a unital AI algebra.

3. If A is a unital AT algebra, then P is a unital AT algebra.

4. If A is a unital AD algebra, then P is a unital AD algebra.
Rokhlin property and strongly self-absorbing

Proposition 19. Let $P \subset A$ be an inclusion of separable unital C*-algebras with index finite and A have approximately inner half flip. Suppose that E has the Rokhlin property and A is semiprojective. Then P has approximately inner half flip.

Remark 20. 1. Under the same condition for an inclusion of separable unital C*-algebras $P \subset A$ in Proposition 19 since P has approximately inner half flip map we know that P is nuclear and simple.

2. To deduce the simplicity of P we need only the simplicity of A and the Rokhlin condition for $E: A \to P$.

3. If \mathcal{D} is a strongly self-absorbing inductive limit of recursive subhomogeneous algebras in the sense of Phillips [26], then \mathcal{D} is either projectionless (i.e. the Jiang-Su algebra \mathcal{Z}) or a UHF algebra of infinite type by Toms and Winter [34, Corollary 5.10]. On the contrary, if \mathcal{D} is a separable purely infinite strongly self-absorbing C*-algebra which satisfies the Universal Coefficients Theorem
(We write \mathcal{D} is in the UCT class \mathcal{N}). Then \mathcal{D} is either \mathcal{O}_2, \mathcal{O}_∞ or a tensor product of \mathcal{O}_∞ with a UHF algebra of infinite type by Toms and Winter [34, Corollary 5.2].

Definition 21. (Phillips 01) The class of *recursive subhomogeneous algebras* is the smallest class \mathcal{R} of C*-algebras which is closed under isomorphism and such that

1. If X is a compact Hausdorff space and $n \geq 1$, then $C(X, M_n) \in \mathcal{R}$.

2. \mathcal{R} is closed under the following pull back construction: If $A \in \mathcal{R}$, if X is a compact Hausdorff space, if $X^{(0)} \subset X$ is closed, $\phi: A \to C(X^{(0)}, M_n)$ any unital homomorphism and $\rho: C(X, M_n) \to C(X^{(0)}, M_n)$ is the restrict homomorphism, then the pullback

$$A \oplus_{C(X^{(0)}, M_n)} C(X, M_n)$$

$$= \{ (a, f) \in A \oplus C(X, M_n): \phi(a) = \rho(f) \}$$

is in \mathcal{R}.
Theorem 22. Let \mathcal{D} be \mathcal{U}_∞ and let α be an action of a finite group G on \mathcal{D}. Suppose that α has the Rokhlin property. Then the crossed product $\mathcal{U}_\infty \rtimes_\alpha G$ is isomorphic to \mathcal{U}_∞.
The following example implies that the Rokhlin property is essential in Theorem 22.

Example 23. Let U_∞ be the universal UHF algebra and $A = M_{2\infty}$. Then $A \otimes U_\infty \cong U_\infty$.

Let α be an symmetry by Blackadar [1, Proposition 5.1.2]. Then $A \rtimes_\alpha \mathbb{Z}/2\mathbb{Z}$ is not a AF algebra. We note that α has the tracial Rokhlin property by Phillips [28, Proposition 3.4], but does not have the Rokhlin property, since the crossed product algebra $A \rtimes_\alpha \mathbb{Z}/2\mathbb{Z}$ is not AF algebra by Phillips [27, Theorem 2.2].

Then $\alpha \otimes id$ is a symmetry with the tracial Rokhlin property on $A \otimes U_\infty (\cong A)$, and the crossed product algebra

$$(A \otimes U_\infty) \rtimes_{\alpha \otimes id} \mathbb{Z}/2\mathbb{Z} \cong (A \rtimes_\alpha \mathbb{Z}/2\mathbb{Z}) \otimes U_\infty$$

$$\cong B \otimes U_\infty,$$

where B is the Bunce-Dedens algebras of type 2^∞ by [1, Proposition 5.4.1]. Note that $K_1(B \otimes U_\infty) \neq 0$, that is, $B \otimes U_\infty$ is not a AF algebra. Since a strongly self-absorbing inductive limit of type I with real rank zero C*-algebra is a UHF algebra of infinite type by Toms and Winter [34, Corollary 5.9], $B \otimes U_\infty$ is not
a strongly self-absorbing algebra. Hence there is a symmetry \(\beta \) with the tracial Rokhlin property on \(\mathcal{U}_\infty \) such that \(\mathcal{U}_\infty \rtimes_\beta \mathbb{Z}/2\mathbb{Z} \) is not strongly self-absorbing.
Theorem 24. Let $P \subset A$ be an inclusion of unital separable C*-algebras with index finite. Suppose that a conditional expectation $E: A \to P$ has the Rokhlin property and A is semiprojective and strongly self-absorbing. Then P is strongly self-absorbing.

Corollary 25. Let $P \subset A$ be an inclusion of unital separable C*-algebras with index finite. Suppose that a conditional expectation $E: A \to P$ has the Rokhlin property. Suppose that A is O_2 or O_∞. Then $P \cong A$.

Corollary 26. (Izumi 2002 [9, Theorem 4.2]) Let α be an action of a finite group G on O_2. Suppose that α has the Rohklin property. Then we have

1. $O_2^G \cong O_2$.

2. The crossed product algebra $O_2 \rtimes_\alpha G \cong O_2$.

Remark 27. (Izumi 2004) From [10, Theorem 3.6] there is no non-trivial finite group action with the Rokhlin property on O_∞.
Rokhlin property and \mathcal{D}-absorbing

We use the following characterization of the \mathcal{D}-absorbing.

Theorem 28. (Rordam 02) Let \mathcal{D} be a strongly self-absorbing and A be any separable C*-algebra. A is \mathcal{D}-absorbing (i.e. $A \otimes \mathcal{D} \cong A$) if and only if \mathcal{D} admits a unital *-homomorphism to $A' \cap M(A)\infty$.

Using the above characterization and a basic Lemma 16 we have the following:

Theorem 29. Let $P \subset A$ be an inclusion of unital C*-algebras and E a conditional expectation from A onto P with a finite index. Suppose that \mathcal{D} is a separable unital self-absorbing C*-algebra, A is a separable \mathcal{D}-absorbing, and E has the Rokhlin property. Then P is \mathcal{D}-absorbing.
Remark 30. If we replace the Rokhlin property by the tracial Rokhlin property, which is weaker than the Rokhlin property, then the \mathcal{D}-absorbing property fails. Indeed, Phillips constructed an symmetry α on a strongly self-absorbing UHF algebra \mathcal{D} with the tracial Rokhlin property in the sense of Phillips such that $\mathcal{D} \rtimes_{\alpha} \mathbb{Z}/2\mathbb{Z}$ is not \mathcal{D}-absorbing. (See Example 4.11 of [28].)
Intermediate fixed point algebras

In this section we present an inclusion of unital C*-algebras $P \subset A$ which does not come from an action of finite group on A.

Proposition 31. Let A be a separable unital C*-algebra, α an action of a finite group G on A and $E: A \to A^G$ a canonical conditional expectation. Suppose that α has the Rokhlin property. Then we have

1. For any subgroup H of G the restricted E to A^H, which is a conditional expectation from A^H onto A^G, has the Rokhlin property.

2. If A is a unital local C-algebra, then for any subgroup H of G A^H is a unital local C-algebra.

3. Let D be a strongly self-absorbing C*-algebra and A be D-absorbing. Then for any subgroup H of G A^H is D-absorbing.

4. If $A = \mathcal{O}_2$, then for any subgroup H of G $A^H \cong \mathcal{O}_2$.
Remark 32. Let A be a unital C*-algebra and α be an action from a finite group G on A. Let H be a subgroup of G. Then the condition that an inclusion $A^G \subset A^H$ is isomorphic to $B^K \subset B$ for some C*-algebra B and an action from a finite group K on B implies that H is a normal subgroup of G (c.f. [32]). Hence from Proposition 31 we have examples of conditional expectations for inclusions of unital C*-algebras with the Rokhlin property which do not come from finite group actions.
References

